67 research outputs found

    Speech Recognition for Agglutinative Languages

    Get PDF

    The 12p13.33/RAD52 locus and genetic susceptibility to squamous cell cancers of upper aerodigestive tract

    Get PDF
    Acknowledgments: The authors thank all of the participants who took part in this research and the funders and support and technical staff who made this study possible. We also acknowledge and thank The Cancer Genome Atlas initiative whose data contributed heavily to this study. Funding: Funding for study coordination, genotyping of replication studies and statistical analysis was provided by the US National Institutes of Health (R01 CA092039 05/05S1) and the National Institute of Dental and Craniofacial Research (1R03DE020116). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Comparison between different bio-treatments of a hydrocarbon contaminated soil from a landfill site

    No full text
    We investigated the bio-remediation of a hydrocarbon contaminated soil pile that was slated for landfill disposal, by utilising laboratory based-soil microcosms. The objective was to accelerate the reduction of soil total petroleum hydrocarbon (TPH) to levels that could potentially allow the soil to be used outside a landfill site. Soil TPH content reduced by 57% over a 2 year period from 15,800 to ~6,800 mg kg-1 in the untreated pile, making the soil eligible for landfill disposal under current Australian legislation. Subsequent bio-remediation (natural attenuation, biostimulation, bioaugmentation and biostimulation-bioaugmentation) resulted in over 74% reduction (~1,800 mg kg-1) in soil TPH content over 56 days with most of the reduction occurring in the first 21 days (~60%). Nutrient and microbial amendments did not confer any long-term benefit on the rate of soil TPH reduction with natural attenuation being equally efficient as other bioremediation strategies at day 5
    corecore